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THE TLC SCHEME FOR NUMERILAL SOLUTION OF THE TRANSPORT EQUATION
ON EQUILATERAL TRIANGULAR MESHES

Wallace F. Walters
University of California
Los Alamos National Laboatory
Los Alamos, New Mexico 87545

Abstract

A new triangular linear characteristic TLC scheme for numerically
solving the transport equation on equilateral triangular meshes has
been developed. This scheme uses the analytic solution of the traas-
port equation in the triangle as its basis. The data on edges of the
triangle are assumed linear as is the source -epresentation. A char-
acteristic approach or nodal approach is used to obtain the analytic
solution. Test problems indicate that the new TLC is superior to the
widely used DITRI scheme for a accuracy and positively.
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THE TLC SCHEME FOR NUMERICAL SOLUTION OF THE TRANSPORT EQUATION
ON EQUILATERAL TRIANGULAR MESHES

INTRODUCTION

An accurate difference scheme has been developed for solving the dis-
crete-S.. form of the Boltzmann transport equation in equilateral-triangular
meshes.” This scheme will be referred to as the triangular linear character~
istic scheme, TLC. 1In this scheme the source within each triangle is assumed
to be linear in x and y; and the data along the inflow faces is also assumed
to be linear, hence the name "linear'" characteristic. With this source and
inflow information, it is possible to determine the exact analytic solution
for the triangle. Using this analytic solution, it is possible to construct
the cell average angular flux, the average angular flux on all outflow faces,
and the first moment of the angular flux on all outflow faces, Of course,
there are two sets of these expressions. One is for inflow through one face
of a triangle and the other is for inflow through two faces.

For flow through one face the method of characteristics will be used to
find the analytic solution. The technique is similar to that used in Reference
1 for rectangular x,y geometry. Flow through two faces a nodal method will
be used to determine the analytic solution. This nodal method is similar to
that used in Reference 2 for rectangular x,y geometry. For inflow through one
face the angular flux of the vertex opposite the inflow face is also deter-
mined.

The TLC scheme is compared to the Diamond Triangular (DITRI) scheme3’4
by analyzing two test problems. The DITRI scheme is used in two discrete-
ordinate transport codes which allow equilateral triangular meshes.®'® In
addition E. E. Lewis has recently modified the DIF3D code’ to use the DITRI
scheme.

PRELTMINARES

The TLC method is derived by solving the neutron transport equation analy-
tically in an eguilateral triangular domain. The boundary data and the source
within cach triangle are both assumed to be linear; hence, the word linear in
TLC. in this cection the notation, coordinate systems, source representations,
and certain flug representations are introduced,

The notaticn used throughout this paper is
g i5 the anpular flux;
¢ is the scaiar flux;
S is a wource;
0 is the average firet moment of the augular flux on some
face of the triangle.
poand n are the x- and y-dicection dirsction cosines,

L, R, I, T, and A are subscripts such that L = left, R = right, B = bottom,
and A = average. x, y, t, and 8 subseripts are ussd to denote the cell average
x, ¥, t or 5 moment of a quartity., The subscript m {8 used to denote a din-
crete-ordinate direction,



In the (s,t) system the representation is

S 285 3 (.2
S(S’t)—SA+E—SS+2h(t 3)St

Later in the paper certain approximations will be developed for the source
moments Sx’ Sy’ Ss’ and St'

INFLOW THROUGH TWO FACES

In this section the aralytic solution will be obtained by a method direct-
ly related to the nodal method used in (x,y) gzeometry. Using the (s,t) coordinate
system the transport equation will be integrated over the s coordinate yielding
an equation in t alone. The analytic solution to this equation is indicated
and the expression for the average outflow angular flux Y, is determined.

Using a similar technique the average outflow angular first flux moment 0, is
detcrmined. Since there are no unknown transverse leak~ge terms in these
equations, the result is exactly the same as would have been obtained using
the method of characteristics to determine the solution. This statement has
been verified by solving the transport equation using the method of char-
acteristics, The nodal form is used here because it yields a more convenient
form for making approximations to BR.

Let us assume that
M, n >0, and

n

an~1 (0
0 < tan (“) <3

For these conditions the triangle in Figure 1 has inflow through the bottom

and left faces. The angular flux representations

r - 2 _h
Y (L3, 1) =+ b (= 5) 0,

and

WUV, O s R -

are known. The average angular flux wR and first moment OR are to be determin-
ed.  Note that

- . 28
WR(N,h) = wp ) 0R



In Figure 1 an equilateral triangle is shown with (x,v) and (s,t) co-
or 'inate systems ind: t+ed. The (s,t) coordinate system is obtained by a
clockwise rotation of ' with respect to the (x,y) axes.

In the (x,y) syste. the transport equation is

3Wm BWm
Mo on T Mo 5w Oq’n(x,Y) = Sm(x,y) (1a)

In the (s,t) system,

3Wm 3Wm
T v =
lJm ds + nm 3t + dpm(s9t) Sm(s)t) . (1b)

From this point on the discrete-ordinates subscript m will be suppressed.
Here,

gr= B3

g = BREN

aud 0 is the total cross section.

The data along the faces of the triangle in Figure 1 is assumed to be
linear. That is,
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1
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where £ is the length of a side of the triangle and h is the altitude of the

3 , . , -
o £). A linear moment representation is assumed for the source

in the triangle. In the (x,y) system,

triangle (h =

Ly o 3 -
2) Sx * 2h (y

R h o



Ue now cperate on the tramnsport equation in the (s,t) systen, Eq. {(1b),
with the operator

t/V3

ds

“t/{3

After using Leibnitz rule for the derivative of an integral, we obtain the
equation

3
2t

T V@ + @I+ 31 = 32 WEnEe) + ¥ /5,0]

B -y (- 1 g - t .3
e (YR8 - ¥ (C/3,0)] 4 S5 e[S, - S )+ o5 5p S,
(2)
Here,
t/J3
o () = %%- ¥(s,t) ds
“t/y3
The solution to Eq. (2) is
d’o(t = h) = lllR = p' Pnd’B + (1 - p') PO!DL
+ p‘eB(ZP] -P0O)+ (1 -p") 3L(2P1 - PO)
(3P2 - 2PD)h ¢, Plh
+ I st + i sA . (4)
The neutron balance equation for this triangle is
24! - n - b - -
G g = ) g L2y - ]t oy, =S, (5)

Substituting the expression for {, into the balance equaticn, the following
result is obteined for the ce]]-a§erage argular flux as a function of inflow
quantities.

‘bA = zpll(l = P') ‘1’1‘ + p'lhﬂl

S.h P2

- (P - - ' ' AT gPQ.Z.?@lﬁ
2(P1 - P2)[(1 - p") GL +p ﬂB] + AT + Qi St

(6)



Here,

P’ =0.5 (1 -3 pu/)

¢' =on/n" |

PO(e') = (1-e %) /e' , POO) =1 |,
Pi(e') = (1 - PO,/¢’ , P1(0) = 1/2
Pz(s'5 = (1 - 2P1)/e' , P2(0) = 1/3
P3(e') = (1 - 3P2)/e' , P3(0) = 1/4

As 0+0, £'5C and the functions PO, P1, P2, and P3 tend to the finite values
indicated above.

Now to obtain an expression for OR we operate on the transport equation

with
t/JS t/y3
—-3 s ds define wl(t) g 2~y Y(s,t) s ds
2t _ s 2t
-t/4y3 -t/43

Once again using Leibnitz rule for the derivative of an integral, we
obtain

1
dq‘s(t') 1 2 g
Tt (”[E * a-]

_t 3Y3 p' 0 _ _ _ = 3
= 'H SS + 2Jt£ %T [241 (t—) WB(t/‘/rjvt) \PL( t/J3,t)] + 7t [LPB(t/\/Brt)

- ¥ (-t/3,8)) . (7)

The solution to Eq. (7) is



+ 20 p1 B o, - w) - G - 8p) - Gy - )] :

+ 343-Pe Bo (5w, - (6 + 0] + B - e -y - 8]

+ 3'P2°[6B - OL] . (8)

Using the approximation
a, -
for the average Ilirst moment, the expression for GR becomes

S hP3
- 6 = et 9, (1 - 2p")(P1 - P2)

+ 3P1[p'g ¢ (1 - p') Y] + 3(202 - P1)[p'6, - (1 - p') €]

+ 3¢R(l - 2p')(3P2 - 2P1) . (9)

Now the equations for Y, {y,, and O, have well-defined values as 0+0.
If the cross section and the source terms in these equations are set to zero,
it can be shown from geometric arguments that the resulting equations exhibit
the correct behavior for streaming in a wvoid.

INFLOW THROUGH ONE FACE

The case of inflow through one face of the triangle in Figure 1 will now
be considered. In this case

2n 1
3

> tan >

Iz
wiA

wR’ wL’ BR and 9L must be determined.

The transport equation, Equation (la), can be written in operator form
as

L¥(x,y) = S(x,y)



The solution of the transport equation can be written
¥(x,y) = X(x,y) +a+bx+cy . (10)

Using the linear representation for the source S(x,y) we find |,

=3 = 2
©=%mn Sy »b=5E S
1 EX H n
a = fSA - Sx <3 ) - b - g ©

Now X(x,y) is the solution of the equation
IX =0

Using the method of characteristics the solution everywhere inside
and on the surface of the triangle is

XGey)= [xg - (- 3%+ 2 Bl (11)

Here X, and B, are the average value of X and its first moment on the inflow
(bottom) face such that

C ) - 2 _

X(X:Y - 0) - XB + BB( 2 1) . (12)
The average values of X along the left and right faces are then

Xy = PO(xy - By) + 2Byp(PO - P1) (13)

and

Xp = PO(xg + By) = 2B5(1 - p) (PO - P1) . (14)
With these results, we can use the transformation, Eq. (10), to obtain

expressions for the average value of the angular flux along the left and right
faces o! the triangle. On the left face

Yy = PO, - 85) + 200, (PO - P1)
h h Sy
b SpPL+ 5o s 1P2(1 - 4p) - 2PI(1 - 2p)] + = (P2 - 2P1)

(15)



The average angular outflow flux through the right face is

SxPZh
Yo = wL + 2P16B + n (16)
The cell-~average angular flux is
h sxh
Yy = 2P1 Y + 265 (1 - 2p)(P2 - P1) + S, P2 n o (P3 - P2)(1 - 2p)
S h
+ EI‘]L (P3 - P2) . (17)

In this section
p=0.5(1-4J3p/n) , and € = oh/n

The PO, P1, P2, and P3 are as defined following Eq. (3) with &' replaced by €.
Since the singular characteristic does not intersect either of the out-

flov faces, the amalytic angular flux solution is continuous along these faces.
Since this is the case, we make the simple approximations

i

6p = (by = Uy +08/)/2 (18)

and

0

]

for the first moments on the outflow faces. This approximation has been used
with good results in rectangular meshes for the one outflow face upon which
the analytic angular flux solution is continuous. The angular flux at the
point 3 in the triangle is given by

Wy = [ - (1= 2p) 8] e7™°

S,h h sz
+ 2 po+ (1 - S (P1 - — - (3P1 - PO) . 20
i PO+ (1-20) S (P1 - PO) 1= ¢ 5L (3 ) (20)

Vher the.direction of neutron flow is parallel to the left face of the
triangle [tan (n/p) = n/3}) Equation (4) for wR shoyld yield the same result
as Equation (16) for §,. This does occur. For tan = (n/u) = n/3, p' =1,

p =0, and n' = n. Then both Equations (4) and (16) yield



£
=
]

POy + 6,(2P1 - PO)

S
h h_ y -
+ n SAPI + o (sx *t 3 )(3P2 - 2P1) . (21)

Also of this case both Equations (4) and (17) reduce to

W, = 2Pl + 26,(P2 - P1)

S ,P2h s h S h
¢+ @3- P2) 4 5%— (P3 - P2) . (22)

For this flew direction, it has been shown that the equations for GR reduce
to one another to order 82 for tan-l(a) = g. They do not reduce to one

another exactly since both are approximations.

One can obtain a unique value for the scz2lar flux by summing the expres-
sion for the vertex angular flux, Equation {20), over all discrete-directions.
Since six triangles mee* at a point, six triangles will contrihbute to this
sum. Knowing these vertex scalar fluxes, any source, for example a fission
source, which depends on the scalar flux can be computed for every vertex in
the problem. 1If one further assumes that the source is represented by a
linear expansion in each traingle then the expansion is uniquely determined
by the vertex sources Sl’ SZ’ and S3. The leading term in this expansion is

(S1 + 52 + S3)/3

It the values of the vertex sources are positive then this expansion is posi-
tive everywhere in the triangle. The leading term of the moment expansion

of the source is S,. If we multiply the unique linear expansion by the
positive guantity

BSA/(S1 + S2 + SB) ,
then we obtain an expansion with leading term S, which is positive everywhere

in the triangle. This expansion will have the same form ac the moment expan-
sion if we make the identifications

. 3(5, - 5;) 8,
X (S1 + 85, + 83)

(23)
2

and
SA(ZS3 - S1 -Sz)

y = (S1 + 52 + 83)

R

S (26)



Notice that if

sA = (& + 32 + S3)/3

we obtain the usual form for the x and y derivatiives of S. If all triangles
have positive inflow representations then all vertex values of the angular
flux will be positive. If all angular vertex fluxes are positive then the
scalar flux constructed from these angular fluxes will be positive. Hence,
the vertex values of the source will be positive and the scurce expansion
using relations 23 and 24 will be positive.

TEST PROBLEM RESULTS AND CONCLUSIONS

Two test problems were :cnalyzed using both the DITRI scheme as imple-
mented in the code THREETRAN (hex,z)® and the TLC scheme as implemented in the
code TWOHEX which is under development at the present time at Los Alamos.

The first problem is a simple one energy group problem. The domain is the
hexagon shown in Figure 2. The cross sections are also indicated in this
figure.

The graph in Figure 4 indicates the manner in which the eigenvalue
converges as the size of the triangles in the mesh is reduced. The height of
a triangle in the mesh starts at 6 cm and is reduced as indicated. From the
graph it is quite clear that the TLC scheme is far superior to the DITRI
scheme in terms of accuracy. Table 1 under Figure 4 indicates that the TLC
results are converged while the DITRI eigenvalue has not yet converged. Of
course, this is a severe high leakage test problem ard is simply nsed to
test the methods. The problem is not meant to be characteristic of a reactor
core.

Notice that these schemes do not converge to the same r sult for this
problem. This is due to the fact that the THREETRAN (hex,z) code and the
TWOHEX code use different quadrature sets. The THREETRAN (hex,z) code uses
the 90° rotationally invariant set used by TWOTRAN-II code®. The TWOHEX code
uses a 60 degree rotationally invariant Tschebyschev-Legendre set first des-
cribed by Carlson® and used in the DIAMANT2 code.® The DITRI result is
obtained using the S6 quadrature with 24 directions total. The TLC result
is obtained by using a rectangular S4 set (2 points on each z-direction
cosine level). This S4 set also has 24 directions. Additional results
indicate that these two sets are converging to the same result as the number
of discrete directions is increased.

The second test problem has been used before to test numerical schemes.
The geometric configuration for this problem is shown in Figure 3. Region I
is a highly scattering region with a source density of unity and surrounds
the almost '"black" central region TI. The mesh for Figure 5 is 20 triangles
long by 10 triangles high. 1In region II the side of a triangle is 5 mean
free paths. The results indicate that the TLC method is much more positive
than the DITRI method. No fixup of any kind is used in either of the
schemes. The negative fluxes appearing in the TLC plot are so small that
they are not apparent in the graph. This plot is along triangle b»and number
5. This problem was analyzed using the same guadrature set as in the first
problem.
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Figure 1. Triangle Coordinate Systems.
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Figure 3. Problem 72.
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Figu:; 4. FEigenvalue as

a function of mesh size.
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Table 1. Eigenvalue Comparison
Mesh Size Eigenva]uea Eigenva]uen
(Height of Triangle) DITRI TLE
cm S6 S4 Rectungular
12.00 0.53983 0.62353
6.00 0.58919 0.60111
4.50 0.59796 0.59950
3.00 0.60115 0.59912
2.40 0.60265 0.59900
1.50 0.60424 0.59891
0.75 0.60501 0.59890
5

: Corverged

~ an error of 10



Figure 5, Cell average scalar flux as a function of position.
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